首页> 外文OA文献 >Intelligent Parameter Tuning in Optimization-based Iterative CT Reconstruction via Deep Reinforcement Learning
【2h】

Intelligent Parameter Tuning in Optimization-based Iterative CT Reconstruction via Deep Reinforcement Learning

机译:基于优化的迭代CT智能参数整定   通过深度强化学习进行重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of image-processing problems can be formulated as optimizationproblems. The objective function typically contains several terms specificallydesigned for different purposes. Parameters in front of these terms are used tocontrol the relative weights among them. It is of critical importance to tunethese parameters, as quality of the solution depends on their values. Tuningparameter is a relatively straightforward task for a human, as one canintelligently determine the direction of parameter adjustment based on thesolution quality. Yet manual parameter tuning is not only tedious in manycases, but becomes impractical when a number of parameters exist in a problem.Aiming at solving this problem, this paper proposes an approach that employsdeep reinforcement learning to train a system that can automatically adjustparameters in a human-like manner. We demonstrate our idea in an exampleproblem of optimization-based iterative CT reconstruction with a pixel-wisetotal-variation regularization term. We set up a parameter tuning policynetwork (PTPN), which maps an CT image patch to an output that specifies thedirection and amplitude by which the parameter at the patch center is adjusted.We train the PTPN via an end-to-end reinforcement learning procedure. Wedemonstrate that under the guidance of the trained PTPN for parameter tuning ateach pixel, reconstructed CT images attain quality similar or better than inthose reconstructed with manually tuned parameters.
机译:许多图像处理问题可以表述为优化问题。目标函数通常包含专门为不同目的设计的几个术语。这些术语前面的参数用于控制它们之间的相对权重。调整这些参数至关重要,因为解决方案的质量取决于它们的值。调整参数对于人类来说是一项相对简单的任务,因为可以根据解决方案的质量智能地确定参数调整的方向。然而,手动参数调整不仅在许多情况下很繁琐,而且在问题中存在许多参数时变得不切实际。针对此问题,本文提出了一种方法,该方法采用深度强化学习来训练可自动调整人体参数的系统样的方式。我们在一个基于像素的总变化正则化项的基于优化的迭代CT重建示例问题中证明了我们的想法。我们建立了一个参数调整策略网络(PTPN),它将一个CT图像补丁映射到一个输出,该输出指定调整补丁中心的参数的方向和幅度,并通过端到端的强化学习过程来训练PTPN 。希望在受过训练的PTPN指导下对每个像素进行参数调整,重建的CT图像的质量与手动调整的参数重建的图像相似或更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号